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4. Rationale:  
Both peripheral and central nervous system (CNS) inflammation have been identified as risk 
factors for cognitive decline and neurodegenerative disease in older adults. Blood derived 
markers of inflammation increase with age, and the levels of several proinflammatory proteins 



have been linked to late-life cognitive functioning and dementia risk 1–4. The peripheral immune 
response, which regulates inflammation outside of the CNS, can communicate with the brain 
through both neural and humoral routes, triggering changes in glial and neuronal functioning 5–7. 
Several studies have demonstrated that blood, CSF, and parenchymal levels of proinflammatory 
molecules are elevated in individuals with cognitive impairment, Alzheimer’s disease (AD), and 
vascular dementia 2,3,8–11. Although older adults with mild cognitive impairment or dementia 
express higher levels of inflammatory molecules in blood, CSF, and brain parenchyma, it 
remains unclear whether this heightened innate immune response is driving neurodegenerative 
changes, or if it simply constitutes a secondary response to the accumulation of misfolded 
protein and the degeneration of neural cells. 
 
Cerebral small vessel disease, which includes white matter hyperintensities, silent infarcts, and 
microbleeds, has been consistently associated with cognitive decline12 and elevated dementia 
risk13–15. Longitudinal studies have demonstrated that patients with greater levels of cerebral 
small vessel disease display faster rates of cognitive decline independent of amyloid-β 
pathology16. Similarly, the presence of white matter microstructure abnormalities in patients with 
mild cognitive impairment increases risk for progression to dementia 19. Together, these findings 
suggest that cerebral small vessel disease and white matter dysfunction play a key role in the 
pathogenesis of Alzheimer’s and vascular dementia. 
 
Currently, the relationship between peripheral inflammation, cerebral small vessel disease, white 
matter integrity, and the development of dementia is unclear. Several inflammatory mediators are 
known to have prothrombotic and proatherosclerotic effects 20–22, which may in turn promote 
cerebral small vessel disease and subsequent white matter damage. Multiple inflammatory 
mediators are also known to promote endothelial23,24 and microcirculatory dysfunction25,26, 
which may lead to blood brain barrier disruption, hypoperfusion, and subsequent disruption to 
neuronal and glial functioning 27. On the basis of these findings, it is possible that peripheral 
inflammation contributes to the development of Alzheimer’s and vascular dementia by 
promoting the development of cerebral small vessel disease and white matter dysfunction. Few 
studies have examined the relationship between cerebral small vessel disease, white matter 
integrity, and peripheral inflammation 28–32, and it remains unclear whether peripheral 
inflammation constitutes causes or consequence of these pathological brain changes. To date, no 
study has examined whether heightened peripheral inflammation in midlife, before the typical 
onset of small vessel disease, predicts the development of late-life WMH, silent infarcts, 
microbleeds, or white matter microstructural abnormalities. 
 
The goal of the current study is to improve the understanding of the temporal relationship 
between peripheral inflammation, cerebral small vessel disease, and white matter integrity by 
examining how plasma markers of peripheral inflammation measured at midlife and late-life 
relate to WMH volume, the presence of silent infarcts and microbleeds, and white matter 
microstructure integrity among older adults. If peripheral inflammation does in fact play a causal 
role in the development of cerebral small vessel disease and white matter dysfunction, it’s likely 
that measures of midlife peripheral inflammation will be most predictive of the development of 
these late-life neuroimaging abnormalities. Given the established link between inflammation and 
metabolic syndrome, an additional goal will be to examine whether there is an interaction 
between inflammation and metabolic syndrome at midlife on cerebral small vessel disease and 



white matter integrity in late life. Race-based differences in the strengths of these associations 
will be examined as well to explore whether inflammation-related brain changes are more 
pronounced among black participants who, on average, experience higher rates of metabolic 
syndrome. 
 
5. Main Hypothesis/Study Questions: 
1). Higher levels of peripheral inflammatory markers at midlife (visit 1 and visit 2) and late-life 
(visit 5) will be associated with the presence of silent infarcts, cerebral microbleeds, and greater 
white matter hyperintensity volume (WMH) in late-life.  
 
2). Higher levels of peripheral inflammatory markers at midlife (visit 1) and late-life (visit 5) will 
be associated with reduced white matter integrity as measured using MRI diffusion tensor 
imaging (DTI; lower fractional anisotropy and higher mean diffusivity). 
 
3). Compared to late-life CRP levels, midlife CRP levels will be a stronger predictor of WMH 
volume, silent infarcts, cerebral microbleeds, and white matter integrity in #1. 
 
4). There will be an interaction between plasma inflammatory markers at midlife and metabolic 
syndrome on measures of white matter integrity whereby those with the highest level of 
metabolic syndrome and highest levels of peripheral inflammation at visit 1 will demonstrate the 
greatest levels of late-life DTI-defined white matter damage and WMH volume. 
 
5). Associations between plasma inflammatory markers and MRI measures examined in #1 will 
be stronger in black participants compared to white participants. 
 
6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, 
and any anticipated methodologic limitations or challenges if present). 
 
Inclusion/Exclusion Criteria: Participants will be included on the basis of 1) having received a 
brain MRI at visit 5 as part of the ARIC-NCS, and 2) having inflammatory biomarkers collected 
during midlife (visit 1 or visit 2) and/or late-life (visit 5). Participants who have documented 
neurological conditions (e.g., clinical stroke, TBI with residual cognitive impairment) or 
received treatment (e.g., radiation or chemotherapy) that is likely to alter brain MRI volumes will 
be excluded from the analyses. Participants will also be excluded on the basis of heavy alcohol 
use at visit 5 (defined as more than 14 drinks per week; NIAAA, 2007). 
 
Outcome Variables 
White matter hyperintensity volume (WMH): WMH scores will be derived from proton density-
weighted images extracted from the ARIC-NCS MRI scans obtained at visit 5/NCS. WMH 
burden will be determined using a quantitative computer-aided segmentation program which 
uses an algorithm to segment fluid-attenuated inversion recovery (FLAIR) images (FLAIR-
histoseg) to measure the volumetric burden of leukoaraiosis 33. All analyses using WMH will 
include adjustment for total intracranial volume. 
 
Subclinical and lacunar infarction: The presence of subclinical infarction and lacunar infarction 
will be determined for each patients using the ARIC-NCS MRI scans obtained at visit 5/NCS. 



Subclinical infarction will be defined as cortical and subcortical infarctions >3mm in size that do 
not correlate in time with the onset of neurological symptoms. Lacunar infarctions will be 
defined as subcortical infarctions between >3mm and <20mm in size 34.   
 
Cerebral microbleeds: The presence of cerebral microbleeds will be determined for each patient 
using the T2* GRE MRI sequences from the ARIC-NCS MRI scans obtained at visit 5/NCS. 
Microbleeds will then be classified according to their location as cortical or subcortical.  
 
White matter microstructure: Diffusion tensor imaging (DTI) will be used to evaluate axonal 
integrity. Measures of mean diffusivity (MD) and fractional anisotropy (FA) will be extracted for 
the following regions: uncinated fasciculus, superior lateral fasciculus, genu and splenium of the 
corpus callosum, and whole brain. DTI imaging will be extracted from the ARIC-NCS MRI 
scans obtained at visit 5/NCS. 
 
Additional Variables 
Plasma Inflammatory Markers: plasma levels of inflammatory biomarkers will be extracted from 
ARIC visits 1, 2, and 5 for each participant. The list of inflammatory markers to be extracted at 
each visit is provided in the table below.  
 

Available in Full Cohort 
Visit 1 (87-89) Visit 2 (90-92) Visit 5 (11-13)
WBC   
Fibrinogen   
Albumin   
vWF   
Factor VIII   
 CRP CRP 
 LpPLA2  

Note: Lp-PLA2 = Lipoprotein-associated phospholipase A2; WF = von Willebrand factor 
 
Demographic variables, including race, sex, age, APOE genotype, and center will be extracted 
from ARIC visit 1, visit 2, and visit 5/NCS. Additionally, cardiovascular risk factors including 
hypertension, systolic and diastolic blood pressures, diabetes diagnosis, hypercholesterolemia 
diagnosis, smoking status, BMI, and prior cardiovascular disease will be assessed from ARIC 
visit 1, visit 2, and visit 5/NCS. Based on findings from previous studies, the following variables 
will also be extracted for potential use as covariates: total/high density lipoprotein cholesterol, 
triglycerides, fasting glucose, hemoglobin A1C, homocysteine, use of hormone replacement 
therapy, and use of lipid lowering drugs. Variables that may affect inflammatory status, 
including the presence of specific autoimmune disease, chronic inflammatory diseases (e.g., 
rheumatoid arthritis), and use of anti-inflammatory drugs will be extracted as well. 
 
Data Analysis. 
Hypotheses 1, 2, 3, and 5: To examine the relationship between individual biomarkers and MRI 
variables, each biomarker from visit 1, visit 2, and visit 5 will be categorized into quartiles (Q1, 
lowest; Q2, lower middle; Q3, upper middle; Q4 highest). The lowest category will serve as the 
reference group to which the individual upper categories will be compared on MRI outcome 
variables. To examine the effect of multiple heightened inflammatory markers, patients will be 
classified into three groups based on the number of inflammatory markers classified into the 



highest quartile at visit 1 (T1, 0; T2, 1-2; T3, 3-5). The lowest category (T1) will serve as the 
reference group to which the individual upper categories will be compared on MRI outcome 
measures. To examine the effect of overall inflammatory burden, an inflammatory composite 
score will be created using the five inflammatory biomarkers available at Visit 1 (i.e., WBC, 
fibrinogen, albumin, von Willebrand factor, factor VIII). The inflammatory composite score will 
be created by summing the biomarker levels after each is rescaled to a z-scores based on the 
sample mean. Covariate-adjusted linear regression and logistic regression will be used to 
compare groups on continuous and categorical MRI outcome variables, respectively. The 
following covariates will be included as covariates in the initial multivariable regression model: 
age, sex, education, race-center, APOE e4 status, systolic and diastolic blood pressures, diabetes 
diagnosis, fasting glucose, homocysteine, BMI, lipid lowering treatment, and cardiovascular 
disease burden. To examine the role of midlife vs. late-life inflammation on MRI metrics, the 
main effect of visit 2 CRP and visit 5 CRP on MRI outcome variables will be compared. The 
sample will then be stratified based on race and these analyses will be repeated. 
 
Hypothesis 4: To examine the inflammatory marker by metabolic syndrome interaction on WMH 
volume and whole-brain DTI defined FA and MD, participants will be stratified into one of four 
groups according to the presence or absence of metabolic syndrome (defined using the American 
Heart Association criteria; Grundy, Cleeman, Daniels, & Donato, 2005) and presence of low vs. 
high visit 1 inflammatory composite score (median split). The interaction between metabolic 
syndrome and low vs. high inflammatory composite score on WMH and DTI defined FA and 
MD will be examined using covariate-adjusted linear regression models. For all analyses, 
covariates from the visit during which the inflammatory markers were derived will be used. 
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